CEAC 103 GENERAL CHEMISTRY

Experiment 4

Preparation and Analysis of Potassium Trisoxalatoferrate(III) Trihydrate, $K_3[Fe(C_2O_4)_3].3H_2O$

Purpose: To prepare the complex trisoxalatoferrate(III), $Fe(C_2O_4)_3^{-3}$ anion and isolate it as its hydrated potassium salt, $K_3[Fe(C_2O_4)_3].3H_2O$. Also, to study the photochemical reduction of the sample.

APPARATUS AND CHEMICALS:

K ₂ C ₂ O ₄ .H ₂ O (Potassium oxalate monohydrate)	filter paper
FeCl ₃ .6H ₂ O (Iron (III) chloride hexahydrate)	distilled water
K ₃ Fe(CN) ₆ solution (Potassium hexacyanoferrate(III))	funnel
H ₂ SO ₄ solution (Sulfuric acid)	100-mL beaker
test tubes	

THEORY:

Potassium trisoxalatoferrate(III) trihydrate, $K_3[Fe(C_2O_4)_3].H_2O$ is a green crystalline salt, soluble in hot water but rather insoluble when cold. It can be prepared by the reaction of $K_2C_2O_4.H_2O$ with $FeCl_3.6H_2O$.

 $3K_2C_2O_4.H_2O(aq) + FeCl_3.6H_2O(aq) \rightarrow K_3Fe(C_2O_4)_3].3H_2O(aq) + 3KCl(aq)$

The complex anion is photo-sensitive. This means that upon exposure to light of an appropriate wavelength (<450 nm in this case) the Fe(C₂O₄)₃⁻³ undergoes an intramolecular redox reaction in which the Fe(III) anion is reduced to Fe(II) while one of the oxalate groups is oxidized to CO₂.

$$[Fe(C_2O_4)_3]^{3-} \rightarrow Fe^{2+} + 5/2 C_2O_4^{2-} + CO_2(g)$$

As mentioned above, light causes an internal electron-transfer reaction to occur in $[Fe(C_2O_4)_2]^{3-}$ ion, producing CO_2 and Fe^{2+} ions. The Fe^{2+} that is produced can readily be detected by adding a solution of potassium ferricyanide $K_3Fe(CN)_6$. A deep blue colored ferroferri cyanide complex is formed.

$$Fe^{2+} + Fe(CN)_6^{3-} \rightarrow Fe[Fe(CN)_6]^{-}$$

ferroferricyanide deep blue.

PROCEDURE:

A. Preparation of K₃[Fe(C₂O₄)₃].3H₂O

- 1. Weigh approximately 9.0 g of hydrated potassium oxalate, K₂C₂O₄.H₂O into a 250 mL beaker.
- 2. Add 30 mL of distilled water and heat to dissolve (do not boil).
- 3. In a second small beaker dissolve 4.4 g of $FeCl_3.6H_2O$ in a minimum amount of cold water (10-15 mL). Add the $FeCl_3.6H_2O$ solution to the warm oxalate solution and stir with a glass rod. Allow the product to crystallize (away from strong sunlight) by cooling the solution in an ice-water mixture.
- 4. Collect the crystalline product by filtration. The product is K₃[Fe(C₂O₄)₃].3H₂O.

B. Blueprinting

- 1. Wet a piece of filter paper with $[Fe(C_2O_4)_2]^{3-}$ solution.
- 2. Leave it to dry. (Meanwhile you can follow part C)
- 3. Place small opaque objects (coins, keys, etc.) on the paper.
- 4. Irradiate for few minutes using a light source (If not available you may use bright sunlight)
- 5. Dip the paper into potassium ferricyanide solution (CAUTION potassium ferricyanide is poisonous. Avoid contact with your skin. If it happens immediately wash your skin with plenty of water.)
- 6. Remove the developed blueprint and dip in a beaker of distilled water to wash off excess ferricyanide solution. Explain your observations.

C.Photochemical Reaction of $[Fe(C_2O_4)2]^{3-}$

- 1. Dissolve 0.7 g of your complex in 100 mL of distilled water in a flask. Add 3 mL of 2 M H_2SO_4 and swirl the mixture. To each three labeled test tubes add 10 mL of this solution.
- 2. Keep one tube away from the light source as the control and irradiate the remaining two tubes with the light source for 1 and 5 minutes respectively.
- 3. To all three tubes add 1 mL of 0. 1 M potassium ferricyanide solution $K_3Fe(CN)_6$.
- 4. Record and explain your observations.

DATA SHEET

Preparation and Analysis of Potassium Trisoxalatoferrate(III) Trihydrate, $K_3[Fe(C_2O_4)_3].3H_2O$

Student's Name :	Date:
Laboratory Section/Group No :	
Assistant's Name and Signature :	
A .Blueprinting	
Observations:	
Explain:	
B.Photochemical Reaction of $[Fe(C_2O_4)_2]^{-3}$	
Observations:	
1st sample:	
2.11	
2nd sample:	
3rd sample:	